本文目录一览:
用python搞渗透可以不
可以的
python是一种很方便的脚本语言
写成脚本去进行渗透
python能做什么
python的用途:
Python的优势有必要作为第一步去了解,Python作为面向对象的脚本语言,优势就是数据处理和挖掘,这也注定了它和AI、互联网技术的紧密联系。
网络爬虫。顾名思义,从互联网上爬取信息的脚本,主要由urllib、requests等库编写,实用性很强,小编就曾写过爬取5w数据量的爬虫。在大数据风靡的时代,爬虫绝对是新秀。
人工智能。AI使Python一战成名,AI的实现可以通过tensorflow库。神经网络的核心在于激活函数、损失函数和数据,数据可以通过爬虫获得。训练时大量的数据运算又是Python的show time。
扩展资料:
Python开发人员尽量避开不成熟或者不重要的优化。一些针对非重要部位的加快运行速度的补丁通常不会被合并到Python内。在某些对运行速度要求很高的情况,Python设计师倾向于使用JIT技术,或者用使用C/C++语言改写这部分程序。可用的JIT技术是PyPy。
Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。
Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools, itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。
参考资料来源:百度百科-Python
Python能用来做什么?
python的用途
1、Web开发
Python的诞生历史比Web还要早,由于Python是一种解释型的脚本语言,开发效率高,所以非常适合用来做Web开发。
Python有上百种Web开发框架,有很多成熟的模板技术,选择Python开发Web应用,不但开发效率高,而且运行速度快。
常用的web开发框架有:Django、Flask、Tornado 等。
许多知名的互联网企业将python作为主要开发语言:豆瓣、知乎、果壳网、Google、NASA、YouTube、Facebook……
由于后台服务器的通用性,除了狭义的网站之外,很多App和游戏的服务器端也同样用 Python实现。
2、网络爬虫
许多人对编程的热情始于好奇,终于停滞。
距离真枪实干做开发有技术差距,也无人指点提带,也不知当下水平能干嘛?就在这样的疑惑循环中,编程技能止步不前,而爬虫是最好的进阶方向之一。
网络爬虫是Python比较常用的一个场景,国际上,google在早期大量地使用Python语言作为网络爬虫的基础,带动了整个Python语言的应用发展。以前国内很多人用采集器搜刮网上的内容,现在用Python收集网上的信息比以前容易很多了,如:
从各大网站爬取商品折扣信息,比较获取最优选择;
对社交网络上发言进行收集分类,生成情绪地图,分析语言习惯;
爬取网易云音乐某一类歌曲的所有评论,生成词云;
按条件筛选获得豆瓣的电影书籍信息并生成表格……
应用实在太多,几乎每个人学习爬虫之后都能够通过爬虫去做一些好玩有趣有用的事。
3、人工智能
人工智能是现在非常火的一个方向,AI热潮让Python语言的未来充满了无限的潜力。现在释放出来的几个非常有影响力的AI框架,大多是Python的实现,为什么呢?
因为Python有很多库很方便做人工智能,比如numpy, scipy做数值计算的,sklearn做机器学习的,pybrain做神经网络的,matplotlib将数据可视化的。在人工智能大范畴领域内的数据挖掘、机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
人工智能的核心算法大部分还是依赖于C/C++的,因为是计算密集型,需要非常精细的优化,还需要GPU、专用硬件之类的接口,这些都只有C/C++能做到。
而Python是这些库的API binding,使用Python是因为CPython的胶水语言特性,要开发一个其他语言到C/C++的跨语言接口,Python是最容易的,比其他语言的门槛要低不少,尤其是使用Cython的时候。
4、数据分析
数据分析处理方面,Python有很完备的生态环境。“大数据”分析中涉及到的分布式计算、数据可视化、数据库操作等,Python中都有成熟的模块可以选择完成其功能。对于Hadoop-MapReduce和Spark,都可以直接使用Python完成计算逻辑,这无论对于数据科学家还是对于数据工程师而言都是十分便利的。
5、自动化运维
Python对于服务器运维而言也有十分重要的用途。由于目前几乎所有Linux发行版中都自带了Python解释器,使用Python脚本进行批量化的文件部署和运行调整都成了Linux服务器上很不错的选择。Python中也包含许多方便的工具,从调控ssh/sftp用的paramiko,到监控服务用的supervisor,再到bazel等构建工具,甚至conan等用于C++的包管理工具,Python提供了全方位的工具集合,而在这基础上,结合Web,开发方便运维的工具会变得十分简单。
python都能干什么
python主要可以做Web 和 Internet开发、科学计算和统计、桌面界面开发、软件开发、后端开发等领域的工作。
Python是一种解释型脚本语言。Python可以应用于众多领域,如:数据分析、组件集成、网络服务、图像处理、数值计算和科学计算等众多领域。互联网公司广泛使用Python来做的事一般有:自动化运维、自动化测试、大数据分析、爬虫、Web 等。
扩展资料
python的主要优点:
简单易学:Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。因有极其简单的说明文档,Python极其容易上手。
运行速度快:Python 的底层是用 C 语言写的,很多标准库和第三方库也都是用 C 写的,运行速度非常快。
免费、开源资源:Python是FLOSS(自由/开放源码软件)之一。使用者可以自由地发布这个软件的拷贝、阅读它的源代码、对它做改动、把它的一部分用于新的自由软件中。FLOSS是基于一个团体分享知识的概念。
可扩展性:如果需要一段关键代码运行得更快或者希望某些算法不公开,可以部分程序用C或C++编写,然后在Python程序中使用它们。
参考资料来源:百度百科-Python
Python渗透测试工具都有哪些
网络
Scapy, Scapy3k: 发送,嗅探,分析和伪造网络数据包。可用作交互式包处理程序或单独作为一个库
pypcap, Pcapy, pylibpcap: 几个不同 libpcap 捆绑的python库
libdnet: 低级网络路由,包括端口查看和以太网帧的转发
dpkt: 快速,轻量数据包创建和分析,面向基本的 TCP/IP 协议
Impacket: 伪造和解码网络数据包,支持高级协议如 NMB 和 SMB
pynids: libnids 封装提供网络嗅探,IP 包碎片重组,TCP 流重组和端口扫描侦查
Dirtbags py-pcap: 无需 libpcap 库支持读取 pcap 文件
flowgrep: 通过正则表达式查找数据包中的 Payloads
Knock Subdomain Scan: 通过字典枚举目标子域名
SubBrute: 快速的子域名枚举工具
Mallory: 可扩展的 TCP/UDP 中间人代理工具,可以实时修改非标准协议
Pytbull: 灵活的 IDS/IPS 测试框架(附带超过300个测试样例)
调试和逆向工程
Paimei: 逆向工程框架,包含PyDBG, PIDA , pGRAPH
Immunity Debugger: 脚本 GUI 和命令行调试器
mona.py: Immunity Debugger 中的扩展,用于代替 pvefindaddr
IDAPython: IDA pro 中的插件,集成 Python 编程语言,允许脚本在 IDA Pro 中执行
PyEMU: 全脚本实现的英特尔32位仿真器,用于恶意软件分析
pefile: 读取并处理 PE 文件
pydasm: Python 封装的libdasm
PyDbgEng: Python 封装的微软 Windows 调试引擎
uhooker: 截获 DLL 或内存中任意地址可执行文件的 API 调用
diStorm: AMD64 下的反汇编库
python-ptrace: Python 写的使用 ptrace 的调试器
vdb/vtrace: vtrace 是用 Python 实现的跨平台调试 API, vdb 是使用它的调试器
Androguard: 安卓应用程序的逆向分析工具
Capstone: 一个轻量级的多平台多架构支持的反汇编框架。支持包括ARM,ARM64,MIPS和x86/x64平台
PyBFD: GNU 二进制文件描述(BFD)库的 Python 接口
Fuzzing
Sulley: 一个模糊器开发和模糊测试的框架,由多个可扩展的构件组成的
Peach Fuzzing Platform: 可扩展的模糊测试框架(v2版本 是用 Python 语言编写的)
antiparser: 模糊测试和故障注入的 API
TAOF: (The Art of Fuzzing, 模糊的艺术)包含 ProxyFuzz, 一个中间人网络模糊测试工具
untidy: 针对 XML 模糊测试工具
Powerfuzzer: 高度自动化和可完全定制的 Web 模糊测试工具
SMUDGE: 纯 Python 实现的网络协议模糊测试
Mistress: 基于预设模式,侦测实时文件格式和侦测畸形数据中的协议
Fuzzbox: 媒体多编码器的模糊测试
Forensic Fuzzing Tools: 通过生成模糊测试用的文件,文件系统和包含模糊测试文件的文件系统,来测试取证工具的鲁棒性
Windows IPC Fuzzing Tools: 使用 Windows 进程间通信机制进行模糊测试的工具
WSBang: 基于 Web 服务自动化测试 SOAP 安全性
Construct: 用于解析和构建数据格式(二进制或文本)的库
fuzzer.py(feliam): 由 Felipe Andres Manzano 编写的简单模糊测试工具
Fusil: 用于编写模糊测试程序的 Python 库
Web
Requests: 优雅,简单,人性化的 HTTP 库
HTTPie: 人性化的类似 cURL 命令行的 HTTP 客户端
ProxMon: 处理代理日志和报告发现的问题
WSMap: 寻找 Web 服务器和发现文件
Twill: 从命令行界面浏览网页。支持自动化网络测试
Ghost.py: Python 写的 WebKit Web 客户端
Windmill: Web 测试工具帮助你轻松实现自动化调试 Web 应用
FunkLoad: Web 功能和负载测试
spynner: Python 写的 Web浏览模块支持 Javascript/AJAX
python-spidermonkey: 是 Mozilla JS 引擎在 Python 上的移植,允许调用 Javascript 脚本和函数
mitmproxy: 支持 SSL 的 HTTP 代理。可以在控制台接口实时检查和编辑网络流量
pathod/pathoc: 变态的 HTTP/S 守护进程,用于测试和折磨 HTTP 客户端
Python可以用来干什么?
1、做日常任务,比如下载视频、MP3、自动化操作excel、自动发邮件。
2、做网站开发、web应用开发,很多著名的网站像知乎、YouTube就是Python写的。
许多大型网站就是用Python开发的,例如YouTube、Instagram,还有国内的豆瓣。很多大公司,包括Google、Yahoo等,甚至NASA(美国航空航天局)都大量地使用Python。
3、做网络游戏的后台,很多在线游戏的后台都是Python开发的。
4、系统网络运维
Linux运维是必须而且一定要掌握Python语言,它可以满足Linux运维工程师的工作需求提升效率,总而提升自己的能力,运维工程师需要自己独立开发一个完整的自动化系统时,这个时候才是真正价值的体现,才能证明自身的能力,让老板重视。
5、3D游戏开发
Python也可以用来做游戏开发,因为它有很好的3D渲染库和游戏开发框架,目前来说就有很多使用Python开发的游戏,如迪斯尼卡通城、黑暗之刃。
6、科学与数字计算
我们都知道现在来临了大数据的时代,数据可以说明一切问题的原因,现在很多做数据分析的不是原来那么简单,Python语言成为了做数据分析师的第一首选,它同时可以给工作带来很大的效率。
7、人工智能
人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。Python语言对于人工智能来说是最好的语言。目前好多人都开始学习人工智能+Python学科。
8、网络爬虫
爬虫是属于运营的比较多的一个场景吧,比如谷歌的爬虫早期就是用跑Python写的. 其中有一个库叫 Requests ,这个库是一个模拟HTTP请求的一个库,非常的出名! 学过Python的人没有不知道这个库吧,爬取后的数据分析与计算是Python最为擅长的领域,非常容易整合。不过目前Python比较流行的网络爬虫框架是功能非常强大的scrapy。
9、数据分析
一般我们用爬虫爬到了大量的数据之后,我们需要处理数据用来分析,不然爬虫白爬了,我们最终的目的就是分析数据,在这方面 关于数据分析的库也是非常的丰富的,各种图形分析图等 都可以做出来。也是非常的方便,其中诸如Seaborn这样的可视化库,能够仅仅使用一两行就对数据进行绘图,而利用Pandas和numpy、scipy则可以简单地对大量数据进行筛选、回归等计算。
而后续复杂计算中,对接机器学习相关算法,或者提供Web访问接口,或是实现远程调用接口,都非常简单。